Exercise 6

Use the Laplace transform method to solve the Volterra integral equations:

$$
u(x)=\cos x-\sin x+2 \int_{0}^{x} \cos (x-t) u(t) d t
$$

Solution

The Laplace transform of a function $f(x)$ is defined as

$$
\mathcal{L}\{f(x)\}=F(s)=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

According to the convolution theorem, the product of two Laplace transforms can be expressed as a transformed convolution integral.

$$
F(s) G(s)=\mathcal{L}\left\{\int_{0}^{x} f(x-t) g(t) d t\right\}
$$

Take the Laplace transform of both sides of the integral equation.

$$
\begin{aligned}
\mathcal{L}\{u(x)\} & =\mathcal{L}\left\{\cos x-\sin x+2 \int_{0}^{x} \cos (x-t) u(t) d t\right\} \\
U(s) & =\mathcal{L}\{\cos x\}-\mathcal{L}\{\sin x\}+2 \mathcal{L}\left\{\int_{0}^{x} \cos (x-t) u(t) d t\right\} \\
& =\mathcal{L}\{\cos x\}-\mathcal{L}\{\sin x\}+2 \mathcal{L}\{\cos x\} U(s) \\
& =\frac{s}{s^{2}+1}-\frac{1}{s^{2}+1}+2\left(\frac{s}{s^{2}+1}\right) U(s)
\end{aligned}
$$

Solve for $U(s)$.

$$
\begin{aligned}
\left(1-\frac{2 s}{s^{2}+1}\right) U(s) & =\frac{s}{s^{2}+1}-\frac{1}{s^{2}+1} \\
U(s) & =\frac{\frac{s}{s^{2}+1}-\frac{1}{s^{2}+1}}{1-\frac{2 s}{s^{2}+1}} \\
& =\frac{s-1}{\left(s^{2}+1\right)-2 s} \\
& =\frac{s-1}{(s-1)^{2}} \\
& =\frac{1}{s-1}
\end{aligned}
$$

Take the inverse Laplace transform of $U(s)$ to get the desired solution.

$$
\begin{aligned}
u(x) & =\mathcal{L}^{-1}\{U(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} \\
& =e^{x}
\end{aligned}
$$

